
from Zero to Production

The Hitchhiker’s
GuidE to LLMs for Events

Part: 1

A Primer on LLMs

 A Primer on LLMs 3

Foreword Table of contents

Foreword
Welcome to the world of Large Language Models (LLMs)! In this book, we explore
the intricate process of deploying LLMs into real-world applications, with specific
examples focused on the events industry. From understanding the foundational
concepts of Language Models to navigating the complexities of production
deployment, this book offers a comprehensive guide for practitioners in the field.

Throughout the pages of this book, readers will discover key insights into AI
modeling techniques, the transformative impact of Transformer architecture,
and the practicalities of working with Language Models and how they can be
leveraged to deliver value in the events industry. Whether it's understanding
model size and memory requirements or delving into the nuances of local model
inference, each chapter provides valuable insights and strategies for effective
LLM experimentation and development.

Moreover, readers will explore architectural patterns for LLMs, evaluation
methodologies, and deployment strategies tailored to various use cases and
domains. From customising and fine-tuning models to deploying on local
machines, cloud platforms, or edge devices, this book equips readers with the
knowledge and tools necessary to navigate the complexities of productionising
Language Models. Whether you're a seasoned practitioner or a newcomer to the
field, we invite you to embark on this transformative journey and unlock the full
potential of Gen AI Model deployments.

Happy Deploying!

Table of Contents
Part: 1 A Primer on LLMs		

2. AI modelling 8

 Discriminative modelling 9

 Generative modelling 10

 Generative versus Discriminative modelling 11

 Generative modeling taxonomy 12

3. High-level Transformers architecture 16

 Attention 17

 Inputs and context window 18

 Embedding 19

 Encoder and Decoder 19

 Softmax output 20

4. Difference between various LLMs  
 (architecture, weights and parameters) 21

5. Hugging Face, the house of LLMs 25

Summary 28

1. Dynamic Landscape of Artificial Intelligence 5

A Primer on LLMs	 4

A Primer on LLMs 5

i. Dynamic Landscape of Artificial Intelligence Table of contents

Dynamic Landscape of

Artificial Intelligence

01

AI has emerged as one of the most transformative technologies of the modern
era - revolutionising industries, reshaping economies, and redefining human
capabilities. Its journey from theoretical concepts to real-world applications has
been marked by significant milestones, breakthroughs, and challenges.

The roots of AI can be traced back to ancient times, with mythological tales of
artificial beings brought to life. However, the formal inception of AI as a field of
study can be attributed to the , where the term
"artificial intelligence" was coined. Early pioneers such as ,

, , and others laid the groundwork for AI by exploring
concepts like neural networks, machine learning, and symbolic reasoning.

Dartmouth Conference in 1956
Alan Turing John

McCarthy Marvin Minsky

Despite initial optimism, AI experienced several periods of disillusionment known
as "AI winters," characterised by funding cuts and waning interest due to unmet
expectations. However, each winter was followed by a resurgence fueled by
new breakthroughs and technological advancements. The 1980s witnessed the
rise of expert systems, while the 1990s saw the emergence of machine learning
algorithms like and .Support Vector Machines Hidden Markov Models

We can trace the evolution of AI from its conceptual origins to recent
advancements by dividing it into 4 main sections:

 Origins and early developments

 The AI winter and resurgence

 Rise of deep learning

 Recent developments

Origins and early developments

The AI winter and resurgence

https://home.dartmouth.edu/about/artificial-intelligence-ai-coined-dartmouth
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Hidden_Markov_model

A Primer on LLMs 6

i. Dynamic Landscape of Artificial Intelligence Table of contents

The turning point for AI came with the advent of deep learning, a subfield of
machine learning inspired by the structure and function of the human brain's
neural networks. Breakthroughs in computational power, coupled with vast
amounts of data, enabled deep learning algorithms to achieve unprecedented
performance in tasks such as image recognition, natural language processing,
and speech recognition. Notable milestones include the development of

 and ,
as well as the success of deep learning models like , , and

.

convolutional neural networks (CNNs) recurrent neural networks (RNNs)
AlexNet AlphaGo GPT

(Generative Pre-trained Transformer)

In recent years, AI has continued to evolve at a rapid pace, with breakthroughs
in areas such as , , and

. Autonomous vehicles, healthcare diagnostics, and personalised
recommendation systems are just a few examples of AI applications
transforming industries and improving lives. Furthermore, the convergence of AI
with other technologies like robotics, , and the

 is opening up new possibilities and fueling innovation across sectors.

 reinforcement learning federated learning AI-driven drug
discovery

blockchain Internet of Things
(IoT)

As AI technologies continue to advance, concerns about their ethical and societal
implications have become increasingly prominent. Issues such as bias in algorithms,
job displacement due to automation, and the misuse of AI for surveillance or
warfare have sparked debates and calls for regulation. Organisations and
researchers are actively working to address these challenges through initiatives
focused on fairness, transparency, and accountability in AI systems.

Looking ahead, the future of AI promises even greater advancements, driven by
ongoing research efforts, investment in infrastructure, and collaboration among
academia, industry, and governments.

Rise of deep learning

Recent developments

Generative AI, a branch of artificial intelligence focused on creating new data
from existing examples, has a rich history dating back several decades.

Generative AI

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/AlexNet
https://en.wikipedia.org/wiki/AlphaGo
https://en.wikipedia.org/wiki/Generative_pre-trained_transformer
https://en.wikipedia.org/wiki/Generative_pre-trained_transformer
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Federated_learning
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577280/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7577280/
https://en.wikipedia.org/wiki/Blockchain
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Internet_of_things

A Primer on LLMs		 7

i. Dynamic Landscape of Artificial Intelligence Table of contents

Generative AI traces back to the mid-20th century, initially exploring rule-based
systems and early neural network models. However, computational limitations
restricted significant progress until the late 20th century.

The resurgence of neural networks in the 1990s and 2000s, fueled by
computing advancements and data availability, led to the development of
powerful generative models like and

.
Variational Autoencoders (VAEs)

Generative Adversarial Networks (GANs)

The breakthrough introduction of GANs in 2014 revolutionised generative AI,
enabling the creation of highly realistic synthetic data through adversarial
training. This approach found applications in image generation, text-to-image
synthesis, and style transfer.

Recent years have focused on enhancing the robustness, diversity, and
controllability of generative models. Techniques like self-supervised learning
and regularisation methods aim to improve model generalisation and mitigate
issues like mode collapse and bias. Advancements in generative AI continue,
with ongoing research exploring novel applications in areas such as drug
discovery, content creation, and personalised recommendation systems. Ethical
considerations, including deepfakes and misinformation, remain significant
points of discussion and research in the field.

https://en.wikipedia.org/wiki/Variational_autoencoder
https://en.wikipedia.org/wiki/Generative_adversarial_network

A Primer on LLMs		 8

ii. AI modelling		 Table of contents

AI modelling02

In data science and machine learning, modelling refers to the process of
creating a mathematical representation or algorithm that can identify patterns,
make predictions, or gain insights from historical data. It involves selecting and
training a suitable algorithm on a dataset to learn the underlying relationships
between input variables (features) and the target variable (output).

The goal is to build a model that generalises well to unseen data, allowing it to
make accurate predictions or classifications on new instances. Modelling is a
crucial step in extracting value from data and is used across various applications
such as classification, regression, clustering, and recommendation systems.

In our example, the process of providing the robot with training data, which
includes images of landscapes along with instructions on how to paint them, is
similar to model training. The robot should learn from these examples by
observing the colours, shapes, and patterns in the landscapes and how they
relate to each other to be able to generalise well or create new landscapes that
look like our original landscapes but are completely new.

A machine learning model typically learns the model parameters through the
process known as training.

Let’s consider an example of teaching a robot
to paint a landscape. In this scenario, the
process of teaching a robot to paint a
landscape involves several steps that can be
likened to the concepts in modelling. The
robot has to position its arm correctly on the
x, y, and z axes. With every move, the x, y,
and z coordinates will change. The robot
should also be able to distinguish between
colours and pick the correct colour from the
palette. Pressure on the brush is also
important to create stunning images. We can
say that (x, y, z) coordinates of the robot’s
arm, colour, and brush stroke are the
parameters that will control the final painting.

Image 1.1 Robot learning to paint. Generated via Stable Diffusion 2.

A Primer on LLMs		 9

ii. AI modelling		 Table of contents

This is a simple explanation of model training. In machine learning, model
training also involves a loss function and an optimisation problem. Optimizer
adjusts the model’s parameters to minimise the loss function. At the minimum
loss, we obtain the best-fitting parameters of the model.

Discriminative Modelling
Discriminative modelling is a subset of supervised machine learning wherein
models learn the classification among the output classes of the data. By learning
the boundary between classes, discriminative models can make predictions on
unseen data by assessing which side of the boundary a new sample falls on. This
approach is particularly effective for classification tasks where the primary goal
is to accurately assign class labels to input data points, such as identifying
objects in images or classifying emails as spam or non-spam.

Discriminative modelling is like a detective figuring out clues to solve a mystery.
Instead of trying to understand everything about a situation, it focuses on the
specific details that help make a decision.

For example, imagine you're trying to decide if a fruit is an apple or an orange. A
discriminative model would look at the features like colour, size, and texture to
make the decision. It doesn't need to know everything about apples and oranges;
it just needs to focus on the important details to tell them apart.

In each of these examples, the discriminative model focuses on specific details
to make a decision or prediction without needing to understand everything about
the situation.

In the real world, discriminative modelling is used in many ways:

 Spam Filtering: Your email provider uses discriminative modelling to decide if an
email is spam or not. It looks at specific features like keywords, sender information,
and formatting to make this decision.

 Image Recognition: When you upload a photo to social media and it automatically
tags your friends, that's discriminative modelling at work. The model looks at specific
features in the image to recognise faces and match them to your friends' profiles.

 Sentiment Analysis: Companies use discriminative modelling to analyse customer
reviews and social media posts to understand if people are feeling positive or
negative about their products or services. This helps them make decisions on how to
improve.

A Primer on LLMs		 10

ii. AI modelling		 Table of contents

Generative modelling is a method in machine learning where a model learns the
underlying structure of a dataset to generate new, similar data points.

Generative modelling

In practice, suppose we have a dataset containing images of cats. We can train
a generative AI model on this dataset to capture the complex relationships
between pixels in images of cats. Then, we can sample from this model to
create novel, realistic images of cats that did not exist in the original dataset.

Generative
model

Training Sampling

Random
noise

Training data Generated Samples

Image 1.2 shows how a generative model learns to create new cat images.

To generate new cat images, random noise is input into the model,

which then decodes it to generate realistic cat images. The process of decoding
is learned during model training.

Generative modelling involves creating a model that can produce new data
resembling the original dataset. For instance, in image generation, this task is
formidable due to the multitude of potential pixel configurations compared to the
limited subset that represents recognisable images. Additionally, generative models
must incorporate probabilistic elements rather than deterministic calculations.

If the model relies solely on fixed calculations, like averaging pixel values, it lacks
generativity as it produces the same output consistently. Instead, generative
models require stochastic components to introduce randomness, enabling the
generation of diverse samples. Essentially, the aim is to replicate the underlying
probabilistic distribution of the training data, allowing the model to generate
novel observations that align with the dataset's characteristics.

Image 1.2 Training and sample generation process of a Generative model

A Primer on LLMs		 11

ii. AI modelling		 Table of contents

Discriminative modelling, in contrast to generative modelling, focuses on directly
learning the boundary between different classes or categories within a dataset.
Unlike generative models, which aim to capture the underlying probability
distribution of the entire dataset to generate new samples, discriminative models
prioritise making predictions based on the input features alone. For example, in
the context of image classification, a discriminative model might be trained to
distinguish between images of cats and dogs based solely on the visual features
present in the images, without explicitly learning how to generate new images of
cats or dogs.

Generative versus
Discriminative modelling

Discriminative
model

Training Prediction

Training data

Likely to be a cat

0.75

0

01

0 1

1

Image 1.3 Training process and predicting on unseen data in a Discriminative model

Similar to Image 1.2, here in Image 1.3, we demonstrate the training and prediction
process of a discriminative model. The training data consists of images of cats
labeled as 1 and non-cats labeled as 0. With enough data, we hope the model
learns to classify cat images as 1 and others as 0. We verify this by passing an
unseen cat image to the trained model.

Another concrete example of discriminative modelling can be found in natural
language processing (NLP), where a model might be trained to classify text
documents into different categories, such as spam or non-spam emails,
sentiment analysis (positive or negative sentiment), or topic classification. In
these cases, the discriminative model learns to identify patterns in the input
data that are indicative of each class, without needing to understand the
underlying structure of the entire dataset or generate new text samples.

A Primer on LLMs		 12

ii. AI modelling		 Table of contents

This book primarily focuses on generative LLMs; therefore, discriminative
modelling is beyond its scope. For further insight into discriminative modelling,
please consult the book.Hands-on Machine Learning Aurélien Géron O’Reilly

Overall, discriminative modelling is focused on making accurate predictions for
specific tasks by learning decision boundaries directly from the data, without
the need to model the entire data distribution.

Generative modelling taxonomy

Let’s start by creating a simple generative model in two dimensions. In image 1.3
you have a set of points, generated by an unknown rule.

Image 1.4 Dataset points when plotted on 2 dimensions

After little thought, we decide that our model should look like in image 1.4 i.e. a
rectangular box from which we will sample new points. With this model (or rule),
points outside our box should never be sampled.

Image 1.5 Our model boundary based on observed values

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

A Primer on LLMs		 13

ii. AI modelling		 Table of contents

To generate new observations, you can simply choose a point at random with in
the box.

The objective of generative modelling is to find a distribution (or a rectangular
box in our case) that matches with true data-generating distribution. True data-
generating distribution means the source of truth. In our example, it is the map
of Australia.

Image 1.6 Ground truth of the data points

In image 1.6 we have sampled three points from our model. Green and orange
points are from true distribution because they sit on the land. But the orange
point should never have been generated by our model because it sits outside
the box. Red point does not appear to represent the true data-generating
distribution because it sits on sea.

Orange point sits outside the box, so our model made a mistake by picking a
point outside the box. This is a model error. We train the model to minimise
such errors.

Image 1.7 Points generated using a simple model

A Primer on LLMs		 14

ii. AI modelling		 Table of contents

Although all varieties of generative models share the common goal of
addressing the same task, each adopts slightly distinct methodologies for
modelling the density function Pθ (x).

The density function Pθ (x) represents the likelihood of observing the data x
given a set of model parameters θ. In simpler terms, it tells us how probable it is
to see a certain dataset, like images or text, based on the specific
characteristics or features represented by θ. Generative models use this
function to understand and capture the patterns and structures in the data,
allowing them to generate new, similar samples that follow the same underlying
rules as the original dataset.

We can trace the evolution of AI from its conceptual origins to recent
advancements by dividing it into four main sections:

 The first approach entails modelling the density function explicitly, albeit with
constraints to ensure its tractability (i.e., computability).

 The second approach involves explicitly modelling a tractable approximation of the
density function.

 The third approach implicitly models the density function via a stochastic process
that directly generates data.

Despite its shortcomings, the model is easy to understand and to sample from.

Almost all the generative models are trained to sample from an underlying
distribution. The closer to true data-generating distribution the model is, the
better it is.

A Primer on LLMs		 15

ii. AI modelling		 Table of contents

Implicit density models don't try to figure out the probability density. Instead,
they focus on making a process that creates data directly. A well-known
example is a . Explicit density models are split
into those that directly work on the density function (tractable models) and
those that work on an approximation of it.

generative adversarial network

Tractable models have rules for the model's design so that the density function
is easy to calculate. For example, autoregressive models arrange the input
features in a specific order so that the output can be made step by step, like
word by word or pixel by pixel. Normalising flows use simple, reversible
functions on a basic distribution to make more complex ones.

Approximate density models include variational autoencoders, which add a
hidden variable and work on an approximation of the combined density function.
Energy-based models also use approximate methods, but through Markov Chain
sampling instead of variational methods. Diffusion models train a model to slowly
clean up a picture that's been messed up to approximate the density function.

The main thing connecting all these types of generative models is deep learning.
Most advanced generative models use a deep neural network at their core
because they can be trained from scratch to understand the complex
connections in the data.

Generative Models Explicit Density
Approximate

Density

Tractable Density

Implicit Density

Variational
Autoencoders

Energy based
Models

Diffusion Models

Autoregressive
Models

Normalising
Flows

Generative
Adversarial
Networks

Image 1.8 Generative Model Taxonomy

 Source: Generative Deep Learning by David Foster O’Reilly

https://arxiv.org/abs/1406.2661

A Primer on LLMs	 16

Recurrent neural networks (RNNs) like LSTMs and GRUs

“Attention Is All You Need”

 are autoregressive
models that process sequential data one token at a time. To understand the
context these models constantly update a hidden vector. This was considered
the most sophisticated technique to generate text until 2017, when Google Brain
paper, titled , changed the landscape of text
generation forever with the introduction of Transformers architecture.

A key downside of RNN approach was that the algorithm does not lend itself to
parallelisation, as it must process sequences one token at a time. Transformers
only rely on the attention mechanism, and do not require complex recurrent or
convolutional architectures for sequential modelling. Therefore they are highly
parallelisable.

In June 2018, OpenAI introduced Generative Pre-Trained Transformers (GPTs) in
the paper ,
where authors show how a Transformer architecture can be trained on a huge
amount of text data to predict the next word in a sequence and then
subsequently fine-tuned to specific downstream generative modelling tasks.

“Improving Language Understanding by Generative Pre-Training”

Image 1.9 List of the different tasks and datasets used in GPT paper. Source

iii. High-level Transformers architecture		 Table of contents

High-level Transformers

architecture

03

Task Datasets

Natural language inference SNLI, MultiNLI, Question NLI, RTE, Sci Tail

Question answering RACE, Story Cloze

Sentence similarity
MSR Paraphrase Corpus, Quora Question Pairs, STS
Benchmark

Classification Stanford Sentiment Treebank-2, CoLA

The process of training a model on a large corpus of text to predict the next
word in a sequence given the previous words is called pre-training. This teaches
the model to understand the structure and patterns of natural language.
Transformers in GPT refers to the transformer architecture.

https://link.springer.com/book/10.1007/978-3-030-89929-5
https://arxiv.org/abs/1706.03762
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://openai.com/index/language-unsupervised/

A Primer on LLMs		 17

iii. High-level Transformers architecture		 Table of contents

Nx

Inputs Outputs (shifted right)

Image 1.10 Transformers architecture. Source: Vaswani et al., “Attention is all you need”, arXiv, 2017

Output Probabilities

Positional
Encoding

Positional
Encoding

Nx

Softmax

Linear

Input Embedding Output Embedding

Add & Norm

Masked Multi-Head Attention

Add & Norm

Multi - Head Attention

Add & Norm

Feed Forward

Add & Norm

Multi - Head Attention

Add & Norm

Feed Forward

Attention
Consider the following sentence fragment taken from the amazing book

 by David Foster:Generative Deep Learning

“The pink elephant tried to get into the car but it was too”

What do you think the next word should be and how do we know it should be
something synonymous with “big” ?

There are other words in the sentence that help us make our decision. Had it
been “a sloth” instead of “an elephant”, one would have been more likely to
guess “slow” instead of “big”. Had it been “a swimming pool” instead of “the
car”, one would have been more likely to guess “afraid” instead of “big”.

If the elephant was trying to “squish” "the car, one might have chosen “fast” as
the last word, with “it” now referring to the car.

Some words in the sentence are not important at all. For example, had there been
a green or red elephant, it would not have influenced your choice of final word.

https://www.oreilly.com/library/view/generative-deep-learning/9781098134174/

A Primer on LLMs	 18

iii. High-level Transformers architecture		 Table of contents

Just like we are paying attention to certain words in the sentence and ignoring
others, the attention mechanism in the Transformers is designed to do exactly
this. This makes it highly adaptable, as it can decide where it wants to look for
information at inference time.

The input prompt is stored in a construct called the input “context window”. It
is measured by the number of tokens it holds. The size of the context window
varies widely from model to model.

Inputs and context window

Tokens are the individual units (words, punctuation marks, etc.) resulting from
the process of tokenisation, which involves breaking down a text into smaller
components for analysis or processing in machine learning tasks.

Earlier generative models could hold only in the context
window. However, more recent models can hold at
the time of writing. The model’s input context window size is defined during
model design and pretraining.

512–1024 input tokens
upwards of 200,000 tokens

Image 1.11 Input token context window

T

1

T

2

Embedding

Softmax output

Self-attention
layers

Encoder

Decoder

https://arxiv.org/pdf/2305.10435
https://www.ai21.com/blog/announcing-jamba

Embeddings are vector representations of words or entities in a  
high-dimensional space, where words with similar meanings are closer to each
other. In natural language processing and machine learning, embeddings are
used to capture semantic relationships and contextual information.

A Primer on LLMs		 19

iii. High-level Transformers architecture		 Table of contents

Embeddings in Transformers are learned during model pretraining and are
actually part of the larger Transformer architecture. Each input token in the
context windows is mapped to an embedding. These embeddings are used
throughout the rest of the Transformer neural network, including the  
self-attention layers.

Embedding

Encoder projects a sequence of input tokens into a latent vector space that
represents that structure and meaning of the input. The latent vector space
representation is learned during model pretraining.

The attention weights are passed through the rest of the Transformer neural
network, including the decoder. The decoder uses the attention-based
contextual understanding of the input tokens to generate new tokens, which
ultimately “completes” the provided input. That is why the base model’s
response is often called a completion.

Encoder and Decoder

A Primer on LLMs 20

iii. High-level Transformers architecture		 Table of contents

The softmax output layer generates a probability distribution across the entire
token vocabulary in which each token is assigned a probability that it will be
selected text. Typically the token with the highest probability will be generated as
the next token but there are mechanisms like temperature, top-k & top-p to
modify the next token selection to make the model more or less creative.

Softmax output

Image 1.12

Input token context window, encoder decoder blocks and softmax output payer

Token probability distribution across n tokens in a vocabulary

T

1

T

2

P

1

P

2

Embedding

Self-attention
layers

Encoder

Decoder

Softmax output

A Primer on LLMs 21

iV. Difference between various LLMs Table of contents

Difference between

various LLMs

04

Encoder only

Decoder only

Or also known as autoencoders, are pre-trained using a technique called
masked language modelling (MLM), which randomly masks input tokens and
tries to predict the masked tokens.

Or autoregressive models are pre-trained using unidirectional causal language
modelling (CLM), which predicts the next token using only the previous tokens
— every other token is masked.

The quick brown fox jumps over the lazy _<PREDICT>_

Decoder-only, autoregressive models use millions of text examples to learn a
statistical language representation by continuously predicting the next token
from the previous tokens. These models are the standard for generative tasks,
including question-answer. The families of GPT-3, Falcon, and Llama models are
well-known autoregressive models.

The quick brown fox _<MASKED>_ over the lazy dog.

While transformers predict the next token based solely on the tokens that come
before it, masked language models consider the entire sequence of tokens
when predicting a masked token.

Encoder-only models are best suited for language tasks that utilise the
embeddings generated by the encoder, such as semantic similarity or text
classification because they use bidirectional representations of the input to
better understand the full context of a token — not just the previous tokens in
the sequence. However they are not particularly useful for generative tasks that
continue to generate more text.

An example of a well known encode-only model is .BERT

https://huggingface.co/docs/transformers/model_doc/bert

A Primer on LLMs 22

iV. Difference between various LLMs Table of contents

Encoder-decoder models

Weights

Often also called sequence-to-sequence models, use both the Transformer
encoder and decoder. They were originally designed for translation, and are also
very useful for text-summarisation tasks like T5 or FLAN-T5.

In 2022, researchers at DeepMind released a paper , that
compared the performance of various models and dataset size combinations. In
the paper, they also pretrained a model called Chinchilla, that showcases how a
model, by using significantly more tokens for training than its peers but
considerably smaller and trained for much longer, outperforms much bigger
models. The paper contributed to a significant model size to dataset size ratio
that is now referred to as Chinchilla scaling laws. The paper claimed that the
optimal training data size (measured in tokens) should be 20 times the number
of model parameters and that anything below that 20x ratio is potentially
overparameterised and undertrained.

Hoffmann et al. (2022)

Many multimodal models like DALL·E, Stable Diffusion, and Gemini incorporate
architectures that utilise both encoder and decoder blocks of the transformer
architecture.

Model Task Task Task Datasets

Chinchilla 70 B 1.4 T 1.4 T Compute-optimised

Llama-65B 65 B 1.3 T 1.4 T Compute-optimised

GPT-3 175 B 3.5 T 300 B Overparameterised
for dataset size

OPT-175B 175 B 3.5 T 180 B Overparameterised
for dataset size

BLOOM 176 B 3.5 T 350 B Overparameterised
for dataset size

Llama2-70B 70 B 1.4 T 2.0 T Better than
compute-optimised

Image 1.13 Chinchilla scaling laws for given model size and dataset size. Source: Generative Al
on AWS O'reilly

https://arxiv.org/pdf/2203.15556.pdf

A Primer on LLMs 23

iV. Difference between various LLMs Table of contents

Attention Layers & Parameters

Most of the model cards explain the type of attention layers the model has and
how your hardware can exploit it to full potential. Most common open-source
models also document the parameters that can be tuned to achieve optimum
performance based on your dataset by tuning certain parameters.

The original Transformer paper , used multi-head attention.
Self-attention is very computationally expensive as it calculates n square
pairwise attention scores between every token in the input with every other
token. Since then, much research has been specifically targeted at attention
layers to make them more computationally optimised, such as
and .

Vaswani et al. (2017)

FlashAttention
grouped-query attention (GQA)

According to Chinchilla scaling laws, the 175+ billion parameter models should
be trained on 3.5 trillion tokens. Instead, they were trained with 180–350 billion
tokens — an order of magnitude smaller than recommended. In fact, the more
recent 70 billion parameter model was trained with 2 trillion tokens —
greater than the 20-to-1 token-to-parameter ratio described by the paper. This
is one of the reasons that Llama 2 outperformed the original Llama model on
various benchmarks.

Llama 2

https://arxiv.org/pdf/1706.03762.pdf
https://huggingface.co/docs/text-generation-inference/conceptual/flash_attention
https://paperswithcode.com/method/grouped-query-attention
https://huggingface.co/meta-llama/Llama-2-70b

A Primer on LLMs 24

iV. Difference between various LLMs Table of contents

Encoder-decoder models

Weights

Often also called sequence-to-sequence models, use both the Transformer
encoder and decoder. They were originally designed for translation, and are also
very useful for text-summarisation tasks like T5 or FLAN-T5.

In 2022, researchers at DeepMind released a paper , that
compared the performance of various models and dataset size combinations. In
the paper, they also pretrained a model called Chinchilla, that showcases how a
model, by using significantly more tokens for training than its peers but
considerably smaller and trained for much longer, outperforms much bigger
models. The paper contributed to a significant model size to dataset size ratio
that is now referred to as Chinchilla scaling laws. The paper claimed that the
optimal training data size (measured in tokens) should be 20 times the number
of model parameters and that anything below that 20x ratio is potentially
overparameterised and undertrained.

Hoffmann et al. (2022)

Many multimodal models like DALL·E, Stable Diffusion, and Gemini incorporate
architectures that utilise both encoder and decoder blocks of the transformer
architecture.

Model Task Task Task Datasets

Chinchilla 70 B 1.4 T 1.4 T Compute-optimised

Llama-65B 65 B 1.3 T 1.4 T Compute-optimised

GPT-3 175 B 3.5 T 300 B Overparameterised
for dataset size

OPT-175B 175 B 3.5 T 180 B Overparameterised
for dataset size

BLOOM 176 B 3.5 T 350 B Overparameterised
for dataset size

Llama2-70B 70 B 1.4 T 2.0 T Better than
compute-optimised

Image 1.13 Chinchilla scaling laws for given model size and dataset size. Source: Generative Al
on AWS O'reilly

https://arxiv.org/pdf/2203.15556.pdf

A Primer on LLMs		 25

V. Hugging Face, the house of LLMs Table of contents

Hugging Face, the house

of LLMs

05

Little guide to building Large Language Models Thomasby , co-founder of
Hugging Face.

Hugging Face is a platform that provides easy access to state-of-the-art natural
language processing (NLP) models, including Large Language Models (LLMs),
through open-source libraries. It serves as a hub for the NLP community, offering
a repository of pre-trained models and tools that simplify the development and
deployment of language-based applications.

The platform is particularly valuable for open-source LLMs because it
democratises access to powerful models, allowing developers and researchers to
leverage cutting-edge capabilities without the need for extensive computational
resources or expertise in model training.

Model card - The Hugging Face model card page provides comprehensive
information and documentation for understanding and using pre-trained models,
offering insights into their capabilities, performance, and potential applications.

Image 1.14 Model card page of Mistral 7B Instruct model on HuggingFace

https://docs.google.com/presentation/d/1IkzESdOwdmwvPxIELYJi8--K3EZ98_cL6c5ZcLKSyVg/edit#slide=id.g2c144c77cfe_0_650
https://thomwolf.io/

A Primer on LLMs		 26

V. Hugging Face, the house of LLMs Table of contents

Model inference section to interact with the model.

Deploy model shortcuts that provide boilerplate code to deploy the model on
the different clouds.

Image 1.15 LLM Inference window on HuggingFace model page

Image 1.16 Model deployment boiler plate code on infrastructure of different cloud providers

A Primer on LLMs	 27

V. Hugging Face, the house of LLMs Table of contents

Train model option that shows boilerplate code to train the model on the
respective cloud providers.

Model files can also be downloaded manually or investigated directly from the
model repository page.

Image 1.17 Shortcuts to boilerplate code to train model on multiple vendor’s infrastructure

Image 1.18 Model weights and tokenizer on HuggingFace repository

A Primer on LLMs		 28

VI. Summary Table of contents

Summary

In this introductory chapter on productionising large language models, we first
explore the concept of generative modelling. We differentiate between
discriminative and generative modelling. Then we create a "hello world" model of
generative AI. Later, we explore the Transformer architecture at a high level
without delving into the mathematical details. We also understand the differences
between various LLMs, such as encoder-only models, encoder-decoder models,
and attention layers.

Using the Chinchilla scaling laws, we understand the ratio of model training data
to the number of parameters. This ratio is critical to the performance of any
large language model. Lastly, we explore the UI of Hugging Face, which is the
home of open-source machine learning models.

Our next chapter "How to play with LLMs" delves into various facets of
interacting with large language models. It begins by addressing considerations
around model size and memory requirements. Subsequently, it explores local
model inference techniques, including quantisation methods and different
transformer architectures, along with specific tools like GPT4All, LM Studio,
llama.cpp, and Ollama.

The chapter also discusses utilising Google Colab for model experimentation and
AWS SageMaker Studio, Studio Lab, SageMaker Jumpstart, and Amazon Bedrock
for model deployment. Lastly, it provides guidance on deploying Hugging Face
models onto SageMaker endpoints for real-time inference.

